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Inhomogeneous nucleation in first-order phase transitions
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The Landau-Ginzburg Hamiltonian is considered as a universal model of dynamical critical be-
havior for a system undergoing a first-order phase transition. The resultant equation of motion is
investigated for spherically symmetric solutions which obey particular boundary conditions. The
solutions are found numerically and from these stationary solutions, the average order parameters
and specific heats are calculated. Comparison with the results of homogeneous nucleation phe-
nomenology and with recent experimental results is presented.

PACS number(s): 64.60.Qb

I. INTRODUCTION

The Landau-Ginzburg Hamiltonian [1]

H:/dd:c [E;—(V¢)2+F(¢>) , (1.1)
where d is the dimension and ¢(x,t) denotes a scalar
order parameter field for the critical system under con-
sideration, has played an important role in the theory of
phase transitions. In spite of its seeming simplicity, it
has been recognized as possessing universal features for
systems in the vicinity of phase transition points. In the
consideration of first-order phase transitions, for systems
with no sign inversion symmetry, the potential energy
term F(¢) can be expanded in terms of the order param-
eter as

A A A
F(¢) = Z2¢% + 20 + 20", (1.2)
2 3 4
where A3 # 0 and A4 > 0 are constants and A; =
a(T —T,) depends on the temperature. We will be partic-
ularly interested in spherically symmetric order param-
eter patterns in three dimensions (d = 3). With this
condition, when we minimize the Hamiltonian given in
Eq. (1.1), we obtain the equation of motion,
d? 2d
D ( ¢ 240

) = A2 + A3p® + Asd’. (1.3)

dr?  rdr
Note that cylindrically symmetric solutions would imply
a similar equation to that of Eq. (1.3) except that in the
second term on the left-hand side the factor 2 would be
replaced by 1. Much of the qualitative behavior of the
solutions in both cases is analagous. There is ample phys-
ical motivation for our keen interest in the solutions of
Eq. (1.3) since there exist numerous examples of physical
systems on all length scales that favor spherical symme-
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try either locally or globally. Such examples range from
the model of the early universe on an extremely large size
scale to that of elementary particles on the microscopic
length scale. A class of examples in between these two
extremes is that of liquid-vapor and liquid-solid phase
transitions. For both types of transitions the simplest
model for the nucleation of spherical domains of the low-
temperature phase is the Gibbs-Thomson model. In it.
spherical particles of low-temperature phase nucleate as
a result of thermal fluctuations with the free energy dif-
ference between the two phases involved given by

(91 — g2)
Ug '

AF = 471'20'12 - é7'l'7‘3 (1.4)

where r is the radius of the frozen sphere, o5 the in-

terfacial energy between the two phases, g; and g, the

high- and low-temperature phase molecular free energies,

respectively, and vy is the molecular volume of the low-

temperature phase. Assuming a homogeneous density

profile within a given phase and minimizing AF with

respect to r gives a critical radius ..

201202 .

Te = —————— (1.5}

(91— 92)

below which it is advantageous for the domain to shrink

to a point while » > r. favors an uninhibited size expan-
sion.

Recent experiments involving the freezing of helium,
argon and oxygen in porous vessels [2-5] indicate that ge-
ometrical confinement has important effects on the phys-
ical properties of a liquid that differ from ordinary bulk
substances. Such quantities as effective viscosity and
pressure dependence of the critical temperature strongly
depend on the pore size. This might indicate that a sim-
ple homogeneous nucleation model as described above is
somewhat limited in its applicability. It is also well estab-
lished that *He is a quantum system which supports the
formation of radially-symmetric bubbles [6]. It appears
that these bubbles play an important role in the determi-

nation of the energy spectrum of the bulk 1iquid_4He. In
addition to these examples, the nematic-isotropic phase

transition in liquid crystals has displayed hysteretic be-
havior in confined geometries [7,8]. The following section
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will present the methodology of homogeneous nucleation.
In Sec. III of this paper, we will show a possible extension
of this model to inhomogeneous behavior that has similar
characteristics to those observed in the above mentioned
experiments.

Before going any further, it is helpful to introduce the
scalings of the independent and dependent variables ac-
cording to

vDA,

. A3
r— A T, ¢ — A4d) (1-6)
so that our Eq. (1.3) becomes
" 2 1]
$ 4 =ch+dt+e°, (17)

where we have introduced a control parameter € given by

€= A2A4
= A3

aA4
= —(T —Tp).
As( 0)

(1.8)
Thus, we see that it is completely general for us to con-
sider the case of a = A3 = A4 = D =1 so that

F(¢) = e¢® + 6° + ¢* , (1.9)

where now € = (T — Tp). We will now work solely in our
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scaled variables since they have proven to be equivalent
to any choice of the free parameters with the appropriate
variable transformation. For a general treatment involv-
ing all free parameters we refer the reader to Ref. [9].

II. HOMOGENEOUS NUCLEATION

Here we wish to present only the key aspects of homo-
geneous nucleation phenomenology that will be compa-
rable with the extensions presented in the next section.
For an excellent overview on the subject, we again refer
the reader to a recent review article on the subject, i.e.,
Ref. [10]. In the case of homogeneous nucleation, we need
only to minimize the free energy given by Eq. (1.9), i.e.,

_9F _ 2 443
0= 6¢—26¢+3¢ + 4¢

which gives us the possibilities that either ¢ = 0 (disor-
dered phase) or two ordered phases arise

_ —3+./9— 32
_——T——.

(2.1)

b+ (2.2)
In order for the above roots to be real we require that
the expression under the square root be positive. Thus,
the range of existence for the ordered phase is limited to

T>T, T<T<Tg
[= o+ 9o
0
TST<T, FIG. 1. Variation of the free
T=T, energy F(¢) with temperature.
[ o= ¢+
- ¢+ [
\ T<T,
[ (3 i
T=T
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59— or T<To+—==T,.

<
€= 32

(2.3)

[

The transition temperature 7, is found by solving the
simultaneous equations

F(¢) =€’ +¢> +¢* =0 (2.4)
and
oF _ 2 3
5 = 2¢p + 3¢° +4¢° = 0, (2.5)
which gives the result
T.=To + i (2.6)

In order to have thermodynamic stability, the second
variation of the free energy must be positive, i.e.,

2

0< ‘;Tf = 2¢e + 6¢ + 12¢°. (2.7
The range of thermodynamic stability for the disordered
phase (¢o = 0) is found to be € > 0 or T > Ty. For the
two ordered phases ¢, we find that ¢_ is metastable in
the range T. < T < T, (3 < € < ) and absolutely sta-
ble for T < T. (e < ;). For ¢;, we find that it is unstable
for all temperatures T > To (¢ > 0) and metastable in
the region T < T (e < 0). Figure 1 shows how the free
energy F'(¢) varies with temperature. Figure 2(a) depicts
the hysteresis that is traced out as the order parameter
varies with temperature. It is useful to point out here,
that in the case of a liquid-solid transition, the order pa-
rameter corresponds to the density of the phase. Thus,
¢o would correspond to the liquid phase and ¢_ would
be the solid phase. This gives us the correct behavior for
bulk melting where the solid remains metastable up to
T, and for bulk freezing where likewise the liquid remains
metastable down to T.
The specific heat is determined by

0’F(¢)
ar?

and using the expansion for F(¢) given in Eq. (1.9), we
find

C=-T

(2.8)

C= —2T¢g—‘;j.

(2.9)
Figure 2(b) shows a plot of the specific heat. This model
of homogeneous nucleation only allows for two stable or
metastable states at any given time in the range of tem-
peratures Top < T < T,. It is the case, however, that in
experiment, a much more complicated behavior is real-
ized where many paths can be followed within this region.
Homogeneous nucleation is unable to reproduce this mul-
tihysteretic behavior. In the next section, we discuss a
possible extension to this model and show how the inho-
mogeneous solutions give rise to numerous possibilities
in the behavior of the order parameter and other related
quantities.
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FIG. 2. (a) Variation of the order parameter with tempera-
ture and (b) the specific heat, both in the case of homogeneous
nucleation.
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III. INHOMOGENEOUS NUCLEATION

We wish to find solutions to Eq. (1.7) different than
those in the homogeneous case. Two recent papers [12,13]
have found inhomogeneous kink-type solutions that run
from ¢¢ to ¢_. These solutions obviously have a lim-
ited range of existence in more than one dimension since
the “friction” term corresponding to the derivative ¢, (r)
makes a kink solution impossible when the potential dif-
ference between ¢ and ¢_ becomes too small [e.g., at
T = T. when F(¢o) = F(¢_) = 0]. In the range Ty <
T < T, or equivalently 0 < € < 595, it is found that the
root ¢ acts as an attractor for all solutions to Eq. (1.7)
with initial conditions ¢ (0) = 0 and ¢_ < $(0) < ¢o.
We implement the requirement that ¢ (0) = 0 so that
there is no defect in the order parameter at the center
of the nucleating phase. The second boundary condi-
tion that will be imposed is that ¢(R) = ¢, for some
fixed value of R. Such a condition is imposed with an
eye towards trying to emulate the confined geometry of
a porous glass. The choice of ¢(R) = ¢ is somewhat
natural being as all solutions fulfilling the above require-
ments are attracted to this point. This means that start-
ing from any value of ¢ at the center, provided it is con-
fined by ¢_ < ¢(0) < ¢o, the corresponding solution
¢(r) would asymptotically tend to ¢,. We thus choose
¢+ as our boundary condition at the pore surface. With
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FIG. 3. Plot of the 0-5 node solutions ¢(r) for ¢ = 0.25.
Both ¢ and r are in arbitrary (scaled) units.

this boundary condition, this can be viewed as forming
an inhomogeneous nucleus of a fixed size. We chose a
value of R = 60, but this number is completely arbi-
trary. With this choice, we looked for solutions starting
near ¢(0) < ¢o, i.e., near the liquid phase. Now our
solutions will not begin at ¢o, but due to thermal fluc-
tuations (as in the case of homogeneous nucleation), at
some point with slightly higher energy. We found solu-
tions from 0 to 5 nodes and have plotted a sample of
the full set of solutions for ¢ = 0.25 in Fig. 3. Solu-
tions with a higher number of nodes will also exist, but
the energy required to achieve such solutions becomes
increasingly higher, and soon the starting point ¢(0) lies
closer to ¢_ than to ¢. Solutions were able to be found
for almost the entire range 0 < € < 595 although near the

points € = 0 and € = 595 it sometimes became difficult
to find the lower node solutions. It was found that the 0
node solution only existed up to € = 0.255 and at higher
values of € would become unconfined. There was a sim-
ilar finding for the 1 and 2 node solutions, disappearing
at progressively higher values of €, but all other higher
node solutions were found throughout the entire range.
For each of the solutions, the average value of the order
parameter o was calculated using

R 24
o= (g = D270

and the plots of the o for the 0 to 5 node solutions along
with the homogeneous solutions are shown in Fig. 4. We
see immediately that the possibility now exists for the

(3.1)
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FIG. 4. Plot of o as a function of ¢ from Eq. (3.1) for the
0-5 node solutions. Both o and € are in arbitrary (scaled)
units.

€

0.16 018 02 0.22 024 026

FIG. 5. Plot of the specific heats C as a function of € for
each of the 0-5 node solutions. Both C and e are in arbitrary
(scaled) units.

system to follow several distinct paths in the region T <
T < T,. The specific heat is found in a similar fashion to
Eq. (2.9), except that ¢ is replaced with o = (@) yielding

I

= (3.2)

The plots of the specific heats associated with the various
solutions are shown in Fig. 5. The behavior of the order
parameter and the specific heat are very different from
those that came about in the homogeneous model. We
now need to compare our theoretical model and its results
with experiment.

IV. COMPARISON WITH EXPERIMENT:
FREEZING OF CRYOGENIC FLUIDS
IN POROUS GLASSES

We will now attempt to form our results to this point
into a model that qualitatively describes the very recent
experimental results of the freezing of cryogenic fluid in
porous glasses such as Vycor and silica xerogel [5]. As
previously mentioned, the order parameter in the case of
a liquid-solid transition represents the density. With this
in mind, measurements made ultrasonically, as done by
Molz et al. [5], provide a sensitive measurement of the
density of the sample.

The transverse sound velocity of a system is known
to be a direct function of the density [5]. The crossover
seen in Fig. 4 in the region of € = 0.25 is very similar to
that found by Molz et al. (see Fig. 8 in Ref. [5]). It is
unlikely that the system would find itself in a state with
only solutions of one type (1 node, or 2 node, etc.), but it
is feasible that as the system’s temperature is decreased,
the contribution of each solution to the entire ensemble
would change producing the same type of result. Because
of our choice of parameters, T, is much closer to T, than
to Ty and the plots become crowded above T.. To com-
pare these plots further, the correct parameter values for
the case being studied (Ar, He, etc.) would be required,
but the overall behavior would remain the same. It is
important to note that as the pore radius is increased



4910

C

0.0035
0.003
0.0025
0.002
0.0015
0.001
0.00

€

0.14 0.16 0.18 022 024 0.26

FIG. 6. Plot of the specific heat C as a function of € upon
freezing with inhomogeneous solutions present. Both C and
€ are in arbitrary (scaled) units.

(R — o0) the plots of ¢ for the various solutions would
merge into one line and we would again be left with the
homogeneous case.

The hysteretic behavior of the specific heat was stated
in Ref. [5] to be consistent with the ultrasonic data, al-
though we have no plot to directly compare with Fig. 5.
If we make some assumptions about the contribution of
each solution to the overall state of the system, we could
construct a plot of the specific heat upon freezing. As we
lower the temperature below T,, the higher node solu-
tions are the first to enter, with the lower node (0,1 and
2) solutions existing only at lower temperatures. If we as-
sume that the system would distribute itself evenly over
all possible solutions at a given temperature, we see that
the specific heat has a jump as shown in Fig. 6 when the
lowest node solutions become valid. This again compares
very well with the situation observed experimentally.

A remark should be made in regard to the chosen di-
mensionality of our solutions. The geometry of pores
used in the experiment discussed is certainly not precisely
spherical. Nor is it cylindrical. Recent experiments on
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the filling and draining of Vycor pores suggest a frac-
tal dimension of 2.6 for the pores [11]. With this fact
in mind, we believe the assumption about the spherical
nature of the solutions approximates the reality better.
However, the effect of dimensionality (including a possi-
bly fractal dimension) on the behavior of the solutions
should be investigated in a separate study.

V. CONCLUSIONS

We have presented, in this paper, a model for inhomo-
geneous nucleation in a prototypic spherically symmetric
system undergoing a first-order phase transition. These
solutions enable us to describe some of the experimental
results that remained largely unexplained by the homo-
geneous nucleation model. They are also an improvement
on recent inhomogeneous kink-type solutions [12,13] since
they exist over the entire region Ty < T' < T, and pro-
duce a many path hysteresis in the variation of the or-
der parameter with temperature. The qualitative results
seem to agree very well with experiment, but for further
comparison accurate parameter values for the model are
required. One further improvement would also be to find
these inhomogeneous solutions starting in the region of
¢+ in order to emulate the system under the process of
melting with a solid nucleus at 7 = 0. The effect of the
symmetry of the confining surface on the behavior of in-
homogeneous solutions merits another investigation.
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